Turning Insert Selection Guide

Main Chipbreakers

Negative Type
- MU
- ME
- GU
- GE
- SU
- SE

Positive Type
- MU
- SU
- LB
- LU
- FB

Sub-Chipbreakers

Negative Type
- ME
- GU
- GE
- SE
- LU
- SA
- LB

Strong Edge Chipbreakers
- MX
- UX
- SX
- HW
- MP
- HP
- HU

Chipbreakers for High Efficiency Machining
- ME
- GE
- SE

Chipbreakers for Small Depths
- LU
- SA

Chipbreakers for Heavy Cutting
- GUW
- SEW
- LE

Grades

- **Fine Finishing To Finishing**
 - T1000A
 - T1500Z
 - T3000Z

- **Finishing to Rough Cutting**
 - AC810P
 - AC820P
 - AC830P
 - AC630M
Recommended Cutting Conditions

<table>
<thead>
<tr>
<th>Work Material</th>
<th>Chipbreaker</th>
<th>Grade</th>
<th>Cutting Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft Steel</td>
<td>Fine Finishing</td>
<td>FL</td>
<td>T1500Z</td>
</tr>
<tr>
<td></td>
<td>Finishing</td>
<td>LU</td>
<td>AC810P</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>GU</td>
<td>AC820P</td>
</tr>
<tr>
<td></td>
<td>Rough</td>
<td>MU</td>
<td>AC830P</td>
</tr>
<tr>
<td>Depth of Cut</td>
<td></td>
<td></td>
<td>0.2–0.6–1.0</td>
</tr>
<tr>
<td>Feed Rate</td>
<td></td>
<td></td>
<td>0.05–0.15–0.25</td>
</tr>
<tr>
<td>Cutting Speed</td>
<td></td>
<td></td>
<td>100–200–300</td>
</tr>
<tr>
<td>Medium Carbon Steel</td>
<td>Fine Finishing</td>
<td>FL</td>
<td>T1500Z</td>
</tr>
<tr>
<td></td>
<td>Finishing</td>
<td>LU</td>
<td>AC810P</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>GU</td>
<td>AC820P</td>
</tr>
<tr>
<td></td>
<td>Rough</td>
<td>MU</td>
<td>AC830P</td>
</tr>
<tr>
<td>Depth of Cut</td>
<td></td>
<td></td>
<td>0.2–0.6–1.0</td>
</tr>
<tr>
<td>Feed Rate</td>
<td></td>
<td></td>
<td>0.05–0.15–0.25</td>
</tr>
<tr>
<td>Cutting Speed</td>
<td></td>
<td></td>
<td>100–200–300</td>
</tr>
<tr>
<td>High Carbon Steel</td>
<td>Fine Finishing</td>
<td>FL</td>
<td>T1500Z</td>
</tr>
<tr>
<td></td>
<td>Finishing</td>
<td>LU</td>
<td>AC810P</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>GU</td>
<td>AC820P</td>
</tr>
<tr>
<td></td>
<td>Rough</td>
<td>MU</td>
<td>AC830P</td>
</tr>
<tr>
<td>Depth of Cut</td>
<td></td>
<td></td>
<td>2.0–4.0–6.0</td>
</tr>
<tr>
<td>Feed Rate</td>
<td></td>
<td></td>
<td>0.3–0.45–0.6</td>
</tr>
<tr>
<td>Cutting Speed</td>
<td></td>
<td></td>
<td>110–135–160</td>
</tr>
</tbody>
</table>

Red text indicates 1st recommendation.

General Purpose GE Type Chipbreaker
Achieves high efficiency and longer tool life with reduced rake face wear. Delivers stable chip control performance from shallow cutting depths onwards.

GE Type Chip Control

- **Work Material:** SCM415
- **Cutting Conditions:** $v_c=200\text{m/min}$ Dry

Wear Resistance

- **Work Material:** SCM435
- **Cutting Conditions:** $v_c=250\text{m/min}$ $f=0.4\text{mm/rev}$ $a_p=2.0\text{mm}$

Shared Features of the High Efficiency Chipbreaker Series

- **Application Range**

Characteristics

- **Rake face profile relieves stress concentration with smooth chip evacuation**
- **Localised chip contact causes rake face/chipbreaker wear to progress.**
- **Wide guide face ensures smooth chip flow to relieve stress concentration and reduce damage.**

Cross Section of Chipbreaker

- **The center ridge provides stable chip control.**
- **The side ridges alleviate stress concentration and reduce rake face wear.**

Crater wear

- **Chipbreaker wear**

- **Reduces rake face wear (crater wear and chipbreaker wear). Achieves longer tool life and reduces machining costs.**
Steel

AC800P Series covers a wide range of machining applications from high speed to interrupted cutting.

- All grades feature Super FF Coat, which has excellent wear and chipping resistance.
- Versatile GE Type chipbreaker suited to high-feed applications. High efficiency, long tool life.

AC810P: In addition to FF-TiCN, which has excellent peel-off and wear resistance, this grade features a tough, thick Alumina coating enhanced by newly developed grain growth control technology, excellent wear resistance and long tool life in high-speed, high-feed cutting.

AC820P: In addition to FF-TiCN, which has excellent peel-off and wear resistance, this grade features a high-density structured FF-Al2O3 layer using new smooth surface treatment technology, and also employs coating thickness control technology to achieve excellent versatility, stability, and long tool life.

AC830P: In addition to FF-TiCN, which has excellent peel-off and wear resistance, this grade features a strengthened FF-Al2O3 layer using new stress control technology, and moreover provides excellent reliability and wear resistance in heavy interrupted cutting to achieve long tool life.

Representative Grades / Performance

<table>
<thead>
<tr>
<th>Grades</th>
<th>High Speed Cutting</th>
<th>General Purpose Cutting</th>
<th>Interrupted Cutting</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC810P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC820P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC830P</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AC810P Cutting Performance

- **Continuous Cutting (V-T chart)**
- **Interrupted Cutting**

AC820P Cutting Performance

- **Continuous Cutting**
- **Interrupted Cutting**

AC830P Cutting Performance

- **Continuous Cutting**
- **Interrupted Cutting**

Work Material: SCM435 (Continuous) Insert: CNMG120408N-GU
Cutting Conditions: \(v_c = 270 \text{ to } 370 \text{m/min} \), \(f = 0.3 \text{mm/rev} \), \(a_p = 1.5 \text{mm} \) Wet

Work Material: SCM435 (Interupted) Insert: CNMG120408N-GU
Cutting Conditions: \(v_c = 330 \text{ to } 350 \text{m/min} \), \(f = 0.19 \text{ to } 0.22 \text{mm/rev} \), \(a_p = 1.5 \text{mm} \) Wet

Work Material: S45C (Continuous) Insert: CNMG120408N-GE
Cutting Conditions: \(v_c = 270 \text{m/min} \), \(f = 0.4 \text{mm/rev} \), \(a_p = 1.2 \text{mm} \) Wet, \(T = 21 \text{min} \)

Work Material: SCM435 (Interupted) Insert: CNMG120408N-GE
Cutting Conditions: \(v_c = 350 \text{m/min} \), \(f = 0.2 \text{mm/rev} \), \(a_p = 1.5 \text{mm} \) Wet

Work Material: SCM435 (Continuous) Insert: CNMG120408N-GU
Cutting Conditions: \(v_c = 240 \text{m/min} \), \(f = 0.3 \text{mm/rev} \), \(a_p = 1.5 \text{mm} \) Wet, \(T = 18 \text{min} \)

Work Material: SCM435 (Interupted) Insert: CNMG120408N-GU
Cutting Conditions: \(v_c = 250 \text{m/min} \), \(f = 0.24 \text{mm/rev} \), \(a_p = 1.5 \text{mm} \) Wet
Grades

T1000A / T1500A / T1500Z

- **T1000A**: A high hardness cermet that combines excellent wear resistance and toughness. Achieves high tolerances in continuous cutting of steel and finishing of powdered metal and cast iron.
- **T1500A**: A general purpose cermet made from hard grains with different grain sizes and functionality that provides a good balance of wear resistance and toughness. Also achieves good surface finish.
- **T1500Z**: Employs Brilliant Coat PVD coating with excellent lubricity to provide better wear resistance and stable finished surfaces in low-cutting-speed applications such as machining small workpieces or low carbon steel.

Performance

T1000A Performance

Wear Resistance

- Exhibits excellent wear resistance.

<table>
<thead>
<tr>
<th>Cutting Time</th>
<th>Work Material</th>
<th>Insert</th>
<th>Cutting Conditions: (v) = 320m/min, (f) = 0.20mm/rev, (a_p) = 1.5mm Dry</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>SCM435</td>
<td>CNMG120408N-SU</td>
<td>Cutting Conditions: (v) = 320m/min, (f) = 0.20mm/rev, (a_p) = 1.5mm Dry</td>
</tr>
</tbody>
</table>

Fracture Resistance

- Provides excellent fracture resistance in addition to wear resistance.

<table>
<thead>
<tr>
<th>No. of Impacts</th>
<th>Work Material</th>
<th>Insert</th>
<th>Cutting Conditions: (v) = 230m/min, (f) = 0.20mm/rev, (a_p) = 1.0mm Wet</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SCM435</td>
<td>CNMG120408N-SU</td>
<td>Cutting Conditions: (v) = 230m/min, (f) = 0.20mm/rev, (a_p) = 1.0mm Wet</td>
</tr>
</tbody>
</table>

T1500A Performance

Wear Resistance

- 1.5 times better wear resistance!

<table>
<thead>
<tr>
<th>Cutting Time</th>
<th>Work Material</th>
<th>Insert</th>
<th>Cutting Conditions: (v) = 230m/min, (f) = 0.20mm/rev, (a_p) = 1.0mm Wet</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>SCM435</td>
<td>CNMG120408N-SU</td>
<td>Cutting Conditions: (v) = 230m/min, (f) = 0.20mm/rev, (a_p) = 1.0mm Wet</td>
</tr>
</tbody>
</table>

Machined Surface Finish

- Beautiful glossy finished surfaces after facing.

<table>
<thead>
<tr>
<th>Cutting Time</th>
<th>Work Material</th>
<th>Insert</th>
<th>Cutting Conditions: (v) = 150m/min, (f) = 0.12mm/rev, (a_p) = 0.1mm Wet</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>S45C</td>
<td>DNMG150408N-LU</td>
<td>Cutting Conditions: (v) = 150m/min, (f) = 0.12mm/rev, (a_p) = 0.1mm Wet</td>
</tr>
</tbody>
</table>

T1500Z Performance

Wear Resistance

- Reduces cloudy finish on machined surfaces.

<table>
<thead>
<tr>
<th>Cutting Time</th>
<th>Work Material</th>
<th>Insert</th>
<th>Cutting Conditions: (v) = 150m/min, (f) = 0.20mm/rev, (a_p) = 1.0mm Wet</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>SCM435</td>
<td>CNMG120408N-SU</td>
<td>Cutting Conditions: (v) = 150m/min, (f) = 0.20mm/rev, (a_p) = 1.0mm Wet</td>
</tr>
</tbody>
</table>

Machined Surface Finish

- Beautiful finished surfaces at lower cutting speeds.

<table>
<thead>
<tr>
<th>Cutting Time</th>
<th>Work Material</th>
<th>Insert</th>
<th>Cutting Conditions: (v) = 100m/min, (f) = 0.15mm/rev, (a_p) = 0.1mm Wet</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>S13A</td>
<td>DNMG150408N-LU</td>
<td>Cutting Conditions: (v) = 100m/min, (f) = 0.15mm/rev, (a_p) = 0.1mm Wet</td>
</tr>
</tbody>
</table>

Recommended Cutting Conditions

<table>
<thead>
<tr>
<th>Work Material</th>
<th>Cutting Process</th>
<th>Chipbreaker</th>
<th>Grades</th>
<th>Cutting Conditions</th>
<th>Min. - Optimum - Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft Steel (SS41 and others)</td>
<td>Fine Finishing</td>
<td>FA/FL</td>
<td>T1500Z</td>
<td>0.2 - 0.5</td>
<td>0.05 - 0.15 - 0.25</td>
</tr>
<tr>
<td></td>
<td>Finishing</td>
<td>LU</td>
<td>T1500Z</td>
<td>0.3 - 0.1</td>
<td>0.08 - 0.20 - 0.35</td>
</tr>
<tr>
<td>Alloy Steel Carbon Steel (S45C, SCM43S, and others)</td>
<td>Fine Finishing</td>
<td>FA/FL</td>
<td>T1500A</td>
<td>0.2 - 0.5</td>
<td>0.05 - 0.15 - 0.25</td>
</tr>
<tr>
<td></td>
<td>Finishing</td>
<td>SU/SE</td>
<td>T1500A</td>
<td>0.5 - 0.1</td>
<td>0.08 - 0.20 - 0.35</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>GU</td>
<td>T1500Z</td>
<td>0.8 - 2.2</td>
<td>0.15 - 0.25 - 0.50</td>
</tr>
<tr>
<td>High Carbon Steel Carbon Steel (SCM440H and others)</td>
<td>Fine Finishing</td>
<td>FA/FL</td>
<td>T1000A</td>
<td>0.2 - 0.5</td>
<td>0.05 - 0.15 - 0.25</td>
</tr>
<tr>
<td></td>
<td>Finishing</td>
<td>SU/SE</td>
<td>T1500Z</td>
<td>0.5 - 1.0</td>
<td>0.08 - 0.20 - 0.35</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>GU</td>
<td>T1500Z</td>
<td>0.8 - 2.2</td>
<td>0.15 - 0.25 - 0.50</td>
</tr>
</tbody>
</table>
Application Examples

AC820P

S48C Turbine Hub
Good stability and wear resistance in rough cutting of mill-scaled work with 1.6x tool life.

![Graph](image1)

Insert: CNMG120408N-GE (AC820P)
Cutting Conditions: $v_c=210m/min$ $f=0.3mm/rev$ $a_p=1.0mm$ Wet

SCr420H Output Shaft
Good wear resistance in high-speed conditions and 2.7x tool life.

![Graph](image2)

Insert: CNMG120408N-SX (AC820P)
Cutting Conditions: v_c up to $400m/min$ $f=0.25mm/rev$ $a_p=0.5$ to $1.2mm$ Wet

SCM435 Balancer
High reliability in interrupted cutting with 1.7x tool life.

![Graph](image3)

Insert: WNMG080408N-GU (AC820P)
Cutting Conditions: $v_c=220m/min$ $f=0.18mm/rev$ $a_p=10mm$ Wet

SCM415 Turbine Hub
Low alloy steel and good finishing. Stable cutting with 1.8x tool life.

![Graph](image4)

Insert: DNMG150412N-SX (AC820P)
Cutting Conditions: $v_c=200m/min$ $f=0.15-0.35mm/rev$ $a_p=1.0$ to $2.0mm$ Wet

S48C Compact Knuckle
No sudden breakages and significantly improved stability with 2.5x tool life.

![Graph](image5)

Insert: WNMG080412N-LU (AC820P)
Cutting Conditions: $v_c=192m/min$ $f=0.18mm/rev$ $a_p=1.0$ to $2.0mm$ Wet

SCM25 Gear
Good wear resistance in high-feed conditions with 1.8x tool life.

![Graph](image6)

Insert: CNMG120408N-MU (AC820P)
Cutting Conditions: $v_c=220m/min$ $f=0.5mm/rev$ $a_p=5mm$ Wet

S45C Ring
Good wear resistance in rough cutting of mill-scaled work and 1.5x tool life.

![Graph](image7)

Insert: DCMT11T308N-SU (AC820P)
Cutting Conditions: $v_c=180m/min$ $f=0.17mm/rev$ $a_p=1mm$ Wet

S35C Carrier Flange
Positive type with good wear resistance and 2.2x tool life.

![Graph](image8)

Insert: DCMT11T308N-SU (AC820P)
Cutting Conditions: $v_c=180m/min$ $f=0.17mm/rev$ $a_p=1mm$ Wet
Steel Grades

Application Examples

AC810P

SCr415 Hub

Good tool life in rough cutting of mill-scaled work.

In rough cutting of mill-scaled work, AC810P provides superior wear resistance and cutting edge stability compared to competitor's grade (P10 coating) and has achieved 1.4 times longer tool life.

S45C Hub

Long tool life and stable cutting edge.

AC810P gives higher cutting edge stability than competitor's grade (P10 coating) and achieves 1.5 times longer tool life.

S53C CVJ Outer Race

Long tool life in dry cutting applications.

In dry machining, AC810P provides superior wear resistance compared to competitor's grade (P10 coating) and has achieved 1.5 times longer tool life.

AC830P

S55C Hub Unit

Long tool life in both interrupted and continuous cutting!

AC830P offers reduced chipping compared to competitor's grade (P30) in both continuous and interrupted cutting to give 3x tool life.

SS400 Bolt

Long tool life in both interrupted and continuous cutting!

AC830P offers superior chipping and wear resistance compared to competitor's grade (P30) and has 1.6x tool life.
AC630M suppresses vibration and has 2.5x tool life of competitor’s P20 grade.

AC630M has no chipping during light interrupted cutting and has 3x tool life of competitor’s P20 grade.

AC830P

SS0C Machine Component

Improved efficiency and long tool life.

AC830P provides cutting speed that is 25% faster than competitor’s grade (P30 coating) and achieves 2.3 times longer tool life.

SCM415 Cam Shaft

On par with P20 grade.

In comparison to competitor’s grade (P20 coating) which suffered from sudden breakages leading to unstable tool life (30 to 70 workpieces), ACX00P provides stable tool life that is 3 times longer (140 to 160 workpieces).

AC830P provides cutting speed that is 25% faster than competitor’s grade (P30 coating) and achieves 2.3 times longer tool life.

Scr420 Pinion Gear

Stable, long tool life in heavy interrupted cutting.

In heavy interrupted cutting of gears, AC830P provides less abnormal damage compared to conventional grade (AC3000) and has achieved stable tool life that is 3 times longer.

SNCM420 Large Gear for Construction Equipment

Stable, long tool life in heavy cutting.

In heavy cutting with varying cut depths, AC830P achieves stable tool life that is 4.9 times longer compared to conventional grade (AC3000).

AC630M

SNCM439 Shaft

AC630M suppresses vibration and has 2.5x tool life of competitor’s P20 grade.

S53C Hub

AC630M has no chipping during light interrupted cutting and has 3x tool life of competitor’s P20 grade.

AC900G

Alloy Steel Forged Steel Roll

Reduced cutting resistance during rough cutting of mill-scaled work and improved feed rate have improved efficiency by 1.5x.

Alloy Steel Axle

Stable tool life on rough, mill-scaled work.
Application Examples

T1500A (M Class Insert)

- **SCM415 Arbor**
 - Cutting Conditions: \(v_c = 200 \text{ mm/min}, f = 0.25 \text{ mm/rev}, a_p = 0.3 \text{ mm}, \) Wet
 - Insert: DNMG150408N-LU (T1500A)

- **SCM435 Shaft**
 - Cutting Conditions: \(v_c = 140 \text{ mm/min}, f = 0.12 \text{ mm/rev}, a_p = 0.15 \text{ mm}, \) Wet
 - Insert: DNMG150408N-SU (T1500A)

- **SCM435 Gear Shaft**
 - Cutting Conditions: \(v_c = 150 \text{ mm/min}, f = 0.07 \text{ mm/rev}, a_p = 0.1 \text{ mm}, \) Wet
 - Insert: DNMG150404N-LU (T1500A)

- **S45C Shaft**
 - Cutting Conditions: \(v_c = 180 \text{ mm/min}, f = 0.25 \text{ mm/rev}, a_p = 0.35 \text{ mm}, \) Wet
 - Insert: TNMG160402L-FY (T1500A)

- **SUS316 Valve**
 - Cutting Conditions: \(v_c = 300 \text{ mm/min}, f = 0.05 \text{ mm/rev}, a_p = 0.2 \text{ mm}, \) Wet
 - Insert: DNMG150404R-UM (T1500A)

T1500A (G Class Insert)

- **SAPH400 Automotive Component**
 - Cutting Conditions: \(v_c = 180 \text{ mm/min}, f = 0.25 \text{ mm/rev}, a_p = 0.25 \text{ mm}, \) Wet
 - Insert: TNMG160402L-UM (T1500A)

- **S45C Transmission Part**
 - Cutting Conditions: \(v_c = 280 \text{ mm/min}, f = 0.07 \text{ mm/rev}, a_p = 0.1 \text{ mm}, \) Wet
 - Insert: DNMG150408R-UM (T1500A)

- **SPH440 Drum Brake Component**
 - Cutting Conditions: \(v_c = 120 \text{ mm/min}, f = 0.03 \text{ mm/rev}, a_p = 0.2 \text{ mm}, \) Wet
 - Insert: TPST110304L-SD (T1500A)

- **SCM435 Pump Part**
 - Cutting Conditions: \(v_c = 240 \text{ mm/min}, f = 0.03 \text{ mm/rev}, a_p = 0.5 \text{ mm}, \) Wet
 - Insert: DCGT070202L-FX (T1500A)

Cutting Conditions

- Insert: TNGG160402L-UM (T1500A)
 - Cutting Conditions: \(v_c = 280 \text{ mm/min}, f = 0.1 \text{ mm/rev}, a_p = 0.1 \text{ mm}, \) Wet

Surface Application Examples
Application Examples

T1000A

SCM440 Shaft

![Graph](image1)

- **Insert:** DNMG150408N-SU (T1000A)
- **Cutting Conditions:** $v_c=180\text{m/min}, f=0.10 \text{ to } 0.25\text{mm/rev}, a_p=0.4\text{mm}$, Wet

S45C Flange

![Graph](image2)

- **Insert:** WNMG080408N-LU (T1000A)
- **Cutting Conditions:** $v_c=180\text{m/min}, f=0.08\text{mm/rev}, a_p=0.15\text{mm}$, Wet

S30C Automotive Component

![Graph](image3)

- **Insert:** DCMT070308N-SU (T1000A)
- **Cutting Conditions:** $v_c=330\text{m/min}, f=0.05\text{mm/rev}, a_p=0.3 \text{ to } 0.7\text{mm}$, Wet

S25C Automotive Component

![Graph](image4)

- **Insert:** TNMG160404L-FX (T1000A)
- **Cutting Conditions:** $v_c=170\text{m/min}, f=0.10\text{mm/rev}, a_p=0.2\text{mm}$, Dry

T3000Z

S48C Shaft (Interrupted Cutting)

![Graph](image5)

- **Insert:** CNMG120408N-SX (T3000Z)
- **Cutting Conditions:** $v_c=220\text{m/min}, f=0.25\text{mm/rev}, a_p=1.8\text{mm}$, Wet

SCr420H Cone Clutch

![Graph](image6)

- **Insert:** WNMG080408N-LU (T3000Z)
- **Cutting Conditions:** $v_c=200\text{m/min}, f=0.20\text{mm/rev}, a_p=1.0\text{mm}$, Wet

SCr420H Clutch Gear (Interrupted Cutting)

![Graph](image7)

- **Insert:** DNMG150408N-LU (T3000Z)
- **Cutting Conditions:** $v_c=200\text{m/min}, f=0.3\text{mm/rev}, a_p=0.3 \text{ to } 0.5\text{mm}$, Wet

S45C Machine Component

![Graph](image8)

- **Insert:** CNMT060308N-SU (T3000Z)
- **Cutting Conditions:** $v_c=100\text{m/min}, f=0.20\text{mm/rev}, a_p=1.0\text{mm}$, Wet
Application Examples

T1500Z

SCM415 Shaft

SCM420H Automotive Component

S48C Guide

S45C Sleeve

S43C Lower Shaft

S43C Machine Component

SAPH440 (Press Material) Piston Component

SCM420H Clutch Component

S45C Hub

S45C Flange

S45C Gear (Interrupted Cutting)